THIELOCINS A1 α AND A1 β , NOVEL PHOSPHOLIPASE A₂ INHIBITORS FROM ASCOMYCETES

Sir:

Phospholipase A_2 (PLA₂, EC 3.1.1.4) specifically hydrolyze the sn-2 ester bond of glycerophospholipids to liberate arachidonate which profoundly influence inflammatory reactions. The reguratory molecules of this enzyme activity would be implicated in the control of a wide range of physiological and pathological states such as inflammation, asthma, ischemia, psoriasis, pancreatitis and rheumatoid arthritis¹. In the course of a screening for PLA₂ inhibitors in our laboratories², we found novel potent inhibitors named thielocins A1 α and A1 β^{\dagger} in the culture broth of an ascomycetes, *Thielavia terricola* RF-143. In this communication, we report production, isolation, structural determination and inhibitory activity on PLA₂.

A slant culture of the organism was inoculated into a medium containing glucose 2%, Polypepton 1%, meat extract 0.3%, yeast extract 0.2% and NaCl 0.1%. Aliquots (800 ml) of the inoculated culture cultivated at 28°C for 3 days on a rotary shaker were introduced into a fresh medium (20 liters) of the same composition and cultivated at 28°C for 1 day (aeration: 20 liters/minute, agitation: 150 rpm). A 6-liter portion of the seed culture was transferred into a production medium (180 liters) containing potato decoction (200 g/liter) and sugar (20 g/liter). Fermentation was effected at 28°C (agitation: 370 rpm) over 7 days with aeration at 150 liters/minute. The culture broth (146 liters) was adjusted to pH 3 by addition of dil HCl and filtered. After addition of NaCl (7kg), the filtrate was extracted with EtOAc (36 liters). The mycelial cake was extracted twice with 80% acetone (18 liters each) and the extracts were combined and concentrated to 7 liters in vacuo. The concentrate was extracted with EtOAc (18 liters) at pH 2.5 after addition of water (6 liters). The EtOAc extract was evaporated under a reduced pressure to give a crude mass which was then applied to MCI gel CHP-20P column (8 liters). The column was eluted with a linear gradient prepared from acetone-phosphate buffer 20 mm (pH 7.5) containing NaCl 3% (3:7) and acetone - phosphate buffer 20 mM (pH 7.5) (7:3). The active eluate was concentrated in vacuo to give a crude powder (9.0 g) which was then subjected to silica gel column eluted with CHCl₃ - MeOH - H₂O (62:25:4). After concentration of the active fraction, the resultant crude powder (2.9 g) was purified by a reverse phase HPLC (Nucleosil $5C_{18}$) eluted with $CH_3CN - 0.1\%$ H_3PO_4 (6:4) to afford A1 α (260 mg) and A1 β (470 mg) as a colorless powder. The culture of a thielocin-producing strain of Thielavia terricola RF-143 has been deposited as FERM BP-2196.

	Α1α	$A1\beta$
Appearance	Colorless powder	Colorless powder
MP (°C)	244~247	190~194
$MW ((M + H)^{+}) m/z$	997.3836 (⊿ 0.7 mmu)	997.3856 (1 0.2 mmu)
Molecular formula	$C_{54}H_{60}O_{18}$	$C_{54}H_{60}O_{18}$
Elementary analysis	$C_{54}H_{60}O_{18} \cdot H_2O$	$C_{54}H_{60}O_{18} \cdot H_2O$
Calcd:	C 63.91, H 6.11	C 63.91, H 6.11
Found:	С 63.63, Н 6.06	С 63.52, Н 6.28
UV max nm	End absorption	End absorption
IR (KBr) cm^{-1}	3490, 1740~1675	3560~3440, 1744~1675
CD (MeOH)	$\left[\Theta\right]_{265\sim360}$ zero	$[\Theta]_{230 \sim 300}$ zero
Solubility	Less soluble in most org. solvent	More soluble in most org. solvent
	Insoluble in petroleum ether ether, water	Insoluble in petroleum ether ether, water
TLC (Rf value) ^a	0.5	0.5
HPLC (Rt) ^b	7.0	4.4

Table 1. Physico-chemical properties of thielocins A1 α and A1 β .

^a SiO₂: CHCl₃ - MeOH - $H_2O(4:7:2)$.

Nucleosil 5C₁₈, CH₃CN-0.1% H₃PO₄ (55:45), flow rate; 2 ml/minute, detected at 220 nm.

[†] Thielocins A1 α and A1 β have been patented: EP-395,418 (Oct. 31, 1990). We now designate α -isomer claimed in the patent specification as A1 β ; β -isomer as A1 α .

QCH3 ΟН ₹но сн₃ CH3 ĊН3 `о сн₃ 0 CH₃ н₃со H₃CO CH₃ сн₃ сн₃ в С D в С D A1 α C сн3 сн3 03 0> н₃Ĉ 0 H₃Č COOR сн (осн₃)₃ ö ċн₃ ċн₃ 0 C Ε TsOH H₃C CH3 -CH₃ H₃C CH3 H₃C Ó ćн₃ ÒСН₃ Е А А осн₃ н₃со-ĊН₃ ÒСН3 CH_3 н₃с H₃C OCH₃ 2a R = H**Α**1β 2b $R = CH_3$ ĊOOH 02 COOR -СН3 H₃C F 1 N NaOH (70°C, 40 minutes) н₃со CH₃ соон ▲OCH₃ н₃со н Thielocin A1α (Ia) 10a α-OH СH₃ CH3 O CH3 он Thielocin A1 β (**Ib**) 10a β -OH CH3 ò Ó 0 ∠CH3 H₃CO H₃C CH₃ H₃CO CH3 в С D Ε 0> <u><0</u> ·OCH3 0 H₃C н₃с н₃с ö ő ċн₃ ÓR. ĊНз Ó o ÓН :0 CH3 -сн₃ H₃C H₃C H₃C CH₃ Α F H₃C OCH3 H₃C OCH₃ •осн₃ H₃C COOCH3 соосн3 COOCH3 3a R = H4 5 **3b** $R = CH_3$

1468

DEC, 1991

Fig. 2. Perspective view of 3b.

Physico-chemical properties of A1 α and A1 β are summarized in Table 1. The molecular formulae of A1 α and A1 β were determined both as C₅₄H₆₀O₁₈ by high resolution liquid secondary ion (HRLSI)-MS and elemental analysis. Thielocins A1 α and A1 β are isomers which are interconvertible in 20 mM phosphate buffer containg 10% DMSO at pH 7.25 to form an equilibrium mixture (84:16). The 1 H NMR spectrum (400 MHz, CDCl₃ - CD₃OD (20:1)) showed the signals (δ) of one methylene (2.74 (1H, d, J = 16 Hz), 3.3 (1H, d, J = 16 Hz)), four methoxy (3.83 (9H, s), 3.35 (3H, s)), 14 methyl groups (1.33, 1.89, 2.23, 2.24, 2.26, 2.27, 2.40, 2.41 (3H each, s), 2.27, 2.30, 2.32 (6H each, s)) for A1a; those of one methylene (2.72 (1H, d, J = 16 Hz), 3.38 (1H, d, J = 16 Hz), four methoxy (3.78 (1H, s), 3.81 (1H, s), 3.82 (6H, s)), 14 methyl groups (1.52, 1.75, 2.13, 2.20, 2.21, 2.22, 2.25, 2.34, 2.37, 2.40 (3H each, s), 2.24, 2.28 (6H each, s)) for A1 β .

Upon treatment with CH(OCH₃)₃-TsOH, thielocin A1 α provided a cyclic orthoester 2a: MP 198~ 200°C; $C_{56}H_{62}O_{19}$ ((M + Na)⁺, m/z 1,061.3763, $\Delta 1.6 \,\mathrm{mmu}$), while A1 β did not; indicating their vicinal hydroxyl groups are in cis relationship in A1 α , trans in A1 β . Alkaline hydrolysis (1 N-NaOH, 70° C, 40 minutes) of the dimethyl ester **2b**: $C_{58}H_{66}O_{19}((M+H)^+, m/z 1,067.4281, \Delta 0.8 \text{ mmu}),$ obtained by treatment of 2a with trimethylsilyldiazomethane (TMSCHN₂), provided two diasteroisomers **3a**: $C_{35}H_{40}O_{13}$ ((M+H)⁺, m/z 669.2534, Δ 1.0 mmu) and 4: $C_{35}H_{40}O_{13}$ ((M+H)⁺, m/z669.2554, △ 0.9 mmu) together with a known depside **5**³): MP 169~170°C; $C_{23}H_{28}O_7$ ((M+H)⁺, m/z417.1911, ⊿ 0.0 mmu). Treatment of 3a with TMSCHN₂ gave **3b**: MP 181 ~ 183°C; $C_{36}H_{42}O_{13}$ $((M+H)^+, m/z 683.2705, \Delta 0.4 \text{ mmu})$. The structure of 3b was determined by X-ray analysis. The crystals obtained from aq ethanol are monoclinic, space group $P2_1/c$, with a=13.694 (1), b=8.858 (1), c=34.255 (4) Å, $\beta=122.42$ (1)°, Z=4. The structure was solved by direct methods using MULTAN 87⁴). The final R value was 0.049. A perspective drawing of **3c** was given in Fig. 2. From the above results the structures of thielocins A1 α and A1 β were determined to be **Ia** and **Ib**, respectively as shown in Fig. 1.

Studies of PLA₂ inhibitory activity²⁾ of thielocin A1 β revealed its specificity on the group II PLA₂⁵⁾ from various sources, giving IC₅₀ values of 0.0033 μ M for rat platelet⁶⁾, 21.0 μ M for rat pancreas⁷⁾, 2.0 μ M for bee venom, 63.0 μ M for porcine pancreas and 7.1 μ M for Naja naja venom, respectively. The details will be reported elsewhere in due course.

Tadashi Yoshida Shozo Nakamoto Ryuzi Sakazaki Koichi Matsumoto Yoshihiro Terui Tomohiro Sato Hitoshi Arita Shigeru Matsutani

Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

> KEIZO INOUE Ichiro Kudo

Faculty of Pharmaceutical Science, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received July 9, 1991)

References

- PRUZANSKI, W. & P. VADAS: Phospholipase A₂-a mediator between proximal and distal effectors of inflammation. Immunology Today 12: 143~146, 1991
- TANAKA, K.; H. ITAZAKI & T. YOSHIDA: Cinatrins; a novel family of phospholipase A₂ inhibitors. II. Biological activities. J. Antibiotics 45 (1): 1992, in press
- 3) KITAHARA, N.; H. HARUYAMA, T. HATA & S. TAKAHASHI: The structures of thielavins A, B and C. Prostaglandin synthetase inhibitors from fungi. J. Antibiotics 36: 599~600, 1983
- DEBAERDEMAEKER, T.; G. GERMAIN, P. MAIN, C. TATE & M. M. WOOLFSON: A System of Computer Programs for the Automatic Solution of Crystal

Structures from X-ray Diffraction Data. Univ. of York, England, and Louvain, Belgium, 1987

- 5) HEINRIKSON, R. L.; E. T. KRUEGER & P. S. KEIM: Amino acid sequence of phospholipase A₂ from the venom of *Crotalus adamanteus*. A new classification of phospholipase A₂ based upon structural determinations. J. Biol. Chem. 252: 4913~4921, 1977
- HAYAKAWA, M.; I. KUDO, M. TOMITA, S. NOJIMA & K. INOUE: The primary structure of rat platelet phospholipase A₂. J. Biochem. 104: 767~772, 1988
- 7) ONO, T.; H. TOJO, K. INOUE, H. KAGAMIYAMA, T. YAMANO & M. OKAMOTO: Rat pancreatic phospholipase A₂: Purification, characterization, and Nterminal amino acid sequence. J. Biochem. 96: 785~792, 1984